Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Trop Med Hyg ; 110(4): 738-740, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38471167

RESUMO

Asymptomatic dengue virus (DENV) infections have important public health implications but are challenging to identify. We performed a cross-sectional study of reverse transcription quantitative polymerase chain reaction on pooled sera of asymptomatic individuals from the south coast of Kenya at two time periods to identify cases of asymptomatic viremia. Among 2,460 samples tested in pools of 9 or 10, we found only one positive case (0.04% incidence). Although pooling of samples has the potential to be a cost-effective and time-efficient method for asymptomatic DENV detection, mass cross-sectional pooled testing may not provide accurate data on rates of asymptomatic infection, likely owing to a decrease in the sensitivity with pooling of samples, a short period of viremia, or testing in the absence of an outbreak.


Assuntos
Vírus da Dengue , Dengue , Humanos , Vírus da Dengue/genética , Dengue/diagnóstico , Dengue/epidemiologia , Estudos Transversais , Infecções Assintomáticas/epidemiologia , Quênia/epidemiologia , Viremia , Reação em Cadeia da Polimerase
2.
PLoS Negl Trop Dis ; 17(1): e0010460, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36634153

RESUMO

Rift Valley fever virus (RVFV) is a zoonotic arbovirus that has profound impact on domestic ruminants and can also be transmitted to humans via infected animal secretions. Urban areas in endemic regions across Africa have susceptible animal and human hosts, dense vector distributions, and source livestock (often from high risk locations to meet the demand for animal protein). Yet, there has never been a documented urban outbreak of RVF. To understand the likely risk of RVFV introduction to urban communities from their perspective and guide future initiatives, we conducted focus group discussions with slaughterhouse workers, slaughterhouse animal product traders, and livestock owners in Kisumu City and Ukunda Town in Kenya. For added perspective and data triangulation, in-depth interviews were conducted one-on-one with meat inspector veterinarians from selected slaughterhouses. A theoretical framework relevant to introduction, transmission, and potential persistence of RVF in urban areas is presented here. Urban livestock were primarily mentioned as business opportunities, but also had personal sentiment. In addition to slaughtering risks, perceived risk factors included consumption of fresh milk. High risk groups' knowledge and experience with RVFV and other zoonotic diseases impacted their consideration of personal risk, with consensus towards lower risk in the urban setting compared to rural areas as determination of health risk was said to primarily rely on hygiene practices rather than the slaughtering process. Groups relied heavily on veterinarians to confirm animal health and meat safety, yet veterinarians reported difficulty in accessing RVFV diagnostics. We also identified vulnerable public health regulations including corruption in meat certification outside of the slaughterhouse system, and blood collected during slaughter being used for food and medicine, which could provide a means for direct RVFV community transmission. These factors, when compounded by diverse urban vector breeding habitats and dense human and animal populations, could create suitable conditions for RVFV to arrive an urban center via a viremic imported animal, transmit to locally owned animals and humans, and potentially adapt to secondary vectors and persist in the urban setting. This explorative qualitative study proposes risk pathways and provides initial insight towards determining how urban areas could adapt control measures and plan future initiatives to better understand urban RVF potential.


Assuntos
Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Animais , Humanos , Quênia/epidemiologia , Gado/virologia , Carne , Febre do Vale de Rift/prevenção & controle , Febre do Vale de Rift/transmissão , Ruminantes/virologia , Zoonoses/prevenção & controle , Zoonoses/transmissão , Fatores de Risco , População Urbana , Matadouros/legislação & jurisprudência , Matadouros/normas , Inocuidade dos Alimentos
3.
One Health ; 15: 100457, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36532672

RESUMO

Rift Valley fever virus (RVFV) is an economically devastating, zoonotic arbovirus endemic across Africa with potential to cause severe disease in livestock and humans. Viral spread is primarily driven by movement of domestic ruminants and there is a high potential for transboundary spread. Despite influx of livestock to urban areas in response to the high demand for meat and animal products, RVFV has not been detected in any urban center. The objectives of this study were to determine the feasibility of assessing risk of RVFV introduction to urban Kisumu, Kenya, by testing slaughtered livestock for RVFV exposure and mapping livestock origins. Blood was collected from cattle, sheep, and goats directly after slaughter and tested for anti-RVFV IgG antibodies. Slaughterhouse businessmen responded to a questionnaire on their individual animals' origin, marketplace, and transport means. Thereafter, we mapped livestock flow from origin to slaughterhouse using participatory methods in focus group discussions with stakeholders. Qualitative data on route choice and deviations were spatially integrated into the map. A total of 304 blood samples were collected from slaughtered livestock in October and November 2021. Most (99%) of animals were purchased from 28 different markets across eight counties in Western Kenya. The overall RVFV seroprevalence was 9% (19% cattle, 3% in sheep, and 7% in goats). Migori County bordering Tanzania had the highest county-level seroprevalence (34%) and 80% of all seropositive cattle were purchased at the Suba Kuria market in Migori County. Road quality and animal health influenced stakeholders' decisions for choice of transport means. Overall, this proof-of-concept study offers a sampling framework for RVFV that can be locally implemented and rapidly deployed in response to regional risk. This system can be used in conjunction with participatory maps to improve active livestock surveillance and monitoring of RVFV in Western Kenya, and these methods could be extrapolated to other urban centers or livestock diseases.

4.
Am J Trop Med Hyg ; 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35640647

RESUMO

This study examined whether Aedes aegypti extends its human blood seeking activity into night hours. Human landing catches (HLC) were conducted hourly from early morning (04:30) to late evening (21:30) in urban and rural sites in Kisumu County in western Kenya, and in Kwale County at the coast. Out of 842 female Ae. aegypti mosquitoes, 71 (8.5%) were collected at night (nocturnal), 151 (17.9%) at twilight (crepuscular), and 620 (73.6%) during the day (diurnal). Three-fold and significantly more Ae. aegypti female mosquitoes were collected during the twilight (crepuscular) hours than night (nocturnal) hours. Significantly more Ae. aegypti female mosquitoes were collected during daytime (diurnal) than night time (nocturnal). In general, the number of mosquitoes collected reduced as darkness increased. Extended time into the night to seek for blood meals enhances chances for Ae. aegypti to contact humans and transmit arboviruses diseases.

5.
PLOS Glob Public Health ; 2(7): e0000505, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36962424

RESUMO

The Rift Valley fever virus (RVFV) is a zoonotic arbovirus that can also transmit directly to humans from livestock. Previous studies have shown consumption of sick animal products are risk factors for RVFV infection, but it is difficult to disentangle those risk factors from other livestock rearing activities. Urban areas have an increased demand for animal source foods, different vector distributions, and various arboviruses are understood to establish localized urban transmission cycles. Thus far, RVFV is an unevaluated public health risk in urban areas within endemic regions. We tested participants in our ongoing urban cohort study on dengue (DENV) and chikungunya (CHIKV) virus for RVFV exposure and found 1.6% (57/3,560) of individuals in two urban areas of Kenya had anti-RVFV IgG antibodies. 88% (50/57) of RVFV exposed participants also had antibodies to DENV, CHIKV, or both. Although livestock ownership was very low in urban study sites, RVFV exposure was overall significantly associated with seeing goats around the homestead (OR = 2.34 (CI 95%: 1.18-4.69, p = 0.02) and in Kisumu, RVFV exposure was associated with consumption of raw milk (OR = 6.28 (CI 95%: 0.94-25.21, p = 0.02). In addition, lack of piped water and use of small jugs (15-20 liters) for water was associated with a higher risk of RVFV exposure (OR = 5.36 (CI 95%: 1.23-16.44, p = 0.01) and this may contribute to interepidemic vector-borne maintenance of RVFV. We also investigated perception towards human vaccination for RVFV and identified high acceptance (91% (97/105) at our study sites. This study provides baseline evidence to guide future studies investigating the urban potential of RVFV and highlights the unexplored role of animal products in continued spread of RVFV.

6.
PLoS One ; 12(12): e0189971, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29261766

RESUMO

Aedes aegypti is the main vector for yellow fever, dengue, chikungunya and Zika viruses. Recent outbreaks of dengue and chikungunya have been reported in Kenya. Presence and abundance of this vector is associated with the risk for the occurrence and transmission of these diseases. This study aimed to characterize the presence and abundance of Ae. aegypti adult mosquitoes from rural and urban sites in western and coastal regions of Kenya. Presence and abundance of Ae. aegypti adult mosquitoes were determined indoors and outdoors in two western (urban Kisumu and rural Chulaimbo) and two coastal (urban Ukunda and rural Msambweni) sites in Kenya. Sampling was performed using quarterly human landing catches, monthly Prokopack automated aspirators and monthly Biogents-sentinel traps. A total of 2,229 adult Ae. aegypti mosquitoes were collected: 785 (35.2%) by human landing catches, 459 (20.6%) by Prokopack aspiration and 985 (44.2%) by Biogents-sentinel traps. About three times as many Ae. aegypti mosquitoes were collected in urban than rural sites (1,650 versus 579). Comparable numbers were collected in western (1,196) and coastal (1,033) sites. Over 80% were collected outdoors through human landing catches and Prokopack aspiration. The probability of collecting Ae. aegypti mosquitoes by human landing catches was significantly higher in the afternoon than morning hours (P<0.001), outdoors than indoors (P<0.001) and in urban than rural sites (P = 0.008). Significantly more Ae. aegypti mosquitoes were collected using Prokopack aspiration outdoors than indoors (P<0.001) and in urban than rural areas (P<0.001). Significantly more mosquitoes were collected using Biogents-sentinel traps in urban than rural areas (P = 0.008) and in western than coastal sites (P = 0.006). The probability of exposure to Ae. aegypti bites was highest in urban areas, outdoors and in the afternoon hours. These characteristics have major implications for the possible transmission of arboviral diseases and for the planning of surveillance and control programs.


Assuntos
Aedes/fisiologia , Ecossistema , População Rural , População Urbana , Envelhecimento , Animais , Automação , Intervalos de Confiança , Geografia , Humanos , Quênia/epidemiologia , Controle de Mosquitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA